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TESTING FOR DISTRIBUTIONAL 

CHANGE IN TIME SERIES 


ATSUSHIINOUE 
North Carolina State University 

This paper proposes nonparametric tests of change in the distribution function of 
a time series. The limiting null distributions of the test statistics depend on a nui- 
sance parameter, and critical values cannot be tabulated a priori. To circumvent 
this problem, a new simulation-based statistical method is developed. The valid- 
ity of our simulation procedure is established in terms of size, local power, and 
test consistency. The finite-sample properties of the proposed tests are evaluated 
in a set of Monte Carlo experiments, and the distributional stability in financial 
markets is examined. 

1. INTRODUCTION 

The purpose of this paper is to develop tests for distributional stability in a 
time series. Although financial markets have experienced significant episodes 
of instability such as the Great Depression, the end of the Bretton Woods Sys- 
tem, the start of the European Monetary System, and the policy regime shifts 
by the Federal Reserve System, econometric theory typically assumes struc- 
tural stability. Indeed, stability of distribution, moments, or parameters is es- 
sential to the proofs of asymptotic properties of the maximum likelihood method, 
generalized method of moments, and nonparametric method. Consequently, in- 
stability can affect estimation and inference. 

Tests for structural change have already been developed in the econometric 
literature. Recent parametric and semiparametric tests include Andrews (1993) 
and Sowell (1996) for generalized method of moments, Bai (1994) for auto- 
regressive moving average (ARMA) models, Bai (1996) and Chu, Stinch- 
combe, and White (1996) for linear regression models, and Chu (1995) for 
generalized autoregressive conditional heteroskedasticity (GARCH) models. Re- 
cent nonparametric tests include Picard (1985) for the spectral distribution of 
stationary Gaussian processes and Hidalgo (1995) for conditional moments. 
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The programs used in this paper and a technical appendix (Appendix B) are available at my homepage, 
http://www4.ncsu.edu/-atsushi. 
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In this paper, we propose nonparametric tests for change in the distribution 
function (d.f.) of a time series. The location of the change or changes is not 
specified a priori, as was done in the change point literature. There are three 
key features that distinguish our tests from the extant tests. First, our tests are 
nonparametric. The parametric and semiparametric tests should perform well 
under the correct specifications, but inference based on misspecified models is 
not well studied. On the other hand, nonparametric tests are robust against mis- 
specification. Whereas it is possible to construct nonparametric tests based on 
density estimators, the convergence rate of density estimators is always slower 
than $and suffers from the curse of dimensionality. Thus, such tests may not 
have power against G local alternatives. In contrast, our tests are based on 
empirical d.f.'s. The convergence rate of empirical d.f.'s is always 6and does 
not suffer from the curse of dimensionality. Our tests have nontrivial power 
against 6local alternatives. The existing change point tests based on empiri- 
cal d.f.'s include Bai (1994, 1996) for residual empirical d.f.'s of ARMA and 
linear regression models with independent disturbance and Szyszkowicz (1994a, 
1994b) for independent observations. Carlstein (1988) develops change point 
estimators based on empirical d.f.'s for independent observations. 

Second, our tests allow for dependence in the data. Thus, our tests are useful 
in time series environments. As a result of allowing for dependence, the limit- 
ing null distributions depend on a nuisance parameter. Thus, we cannot tabu- 
late the critical values a priori. As the bootstrap has proven powerful when the 
limiting distributions depend on nuisance parameters (see, e.g., Andrews, 1997; 
Hansen, 1996; Linton and Gozalo, 1996), we bootstrap the Kolmogorov-Smirnov 
statistic and the CramCr-Von Mises statistic. 

Third, our tests are robust against the heavy-tailed distributions observed in 
financial markets. The unconditional fourth moment of exchange rate returns 
and stock returns may not exist (see Jansen and de Vries, 1991; Phillips, McFar- 
land, and McMahon, 1996), and the limiting distributions of the existing tests 
may depend on whether the unconditional fourth moment exists (see Loretan 
and Phillips, 1994). On the contrary, because our test statistics are constructed 
from empirical d.f.'s, the same asymptotic theory always applies in our frame- 
work. To the best of our knowledge, no extant test satisfies all three of our 
distinguishing key features. 

The rest of the paper is organized as follows. Section 2 proposes nonpara- 
metric tests for change in the distribution function, develops asymptotic theory, 
and establishes the validity of the simulation procedure in terms of size, test 
consistency, and local power. Section 3 implements a set of Monte Carlo ex- 
periments to evaluate the finite-sample performance of the proposed tests. Sec- 
tion 4 applies the proposed testing procedure to analyzing the instability of 
financial markets. Section 5 concludes. Appendix A provides proofs of the 
main results given in the paper. A supplementary appendix, Appendix B, is avail- 
able on my homepage, www4.ncsu.edu/-atsushi. In what follows, I ( . )  de-
notes the indicator function, denotes weak convergence in the space of 



D([0,1] X 3")under the Skorohod topology,' and 5 denotes convergence in 
distribution. All limits are taken as a goes to infinity, where n is the sample 
size. 

2. ASYMPTOTIC THEORY 

In this section, we propose a new simulation-based approach to testing for 
change in the d.f. First, we derive the limit process of a sequential empirical 
process and the limiting distributions of test statistics. Next, we derive the 
limit process of a simulated sequential empirical process and the limiting dis- 
tributions of simulated test statistics. Our simulation approximates the limit- 
ing null distribution, and our simulation-based tests have nontrivial power 
against local alternatives. Last, we show the test consistency against the 
multiple-change alternative hypothesis. 

Let { x , , : i 5 n, rz = 1,2,.. . .) be a triangular array of p-dimensional strong 
mixing random vectors defined on a complete probability space (0,A,P).' In 
this paper, we are interested in testing the null hypothesis of no change in the d.f. 
of {x,,). That is, there is a d.f. F such that 

for all t E % P  and i = 1,2,...,n and n 2 1.A test of change in the d.f, is based 
on a certain distance between the prechange d.f. and the postchange d.f. of { x , ~ ~ ) .  

Because we do not assume any knowledge of the distributional form and the 
change point, we measure the difference between the two d.f.'s by the differ- 
ence between their sample analog: 

where m denotes a candidate change date. We consider the following two test 
statistics based on the preceding distance. One is a weighted Kolmogorov- 
Smirnov statistic, 

TI = sup sup l:(l :)nl/' 
I S n K r i  t€Xi' 

and another is a weighted CramCr-Von Mises statistic, 
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The weighting function ( m / n ) ( l- m/n)  guarantees that the limiting distribu- 
tions are well defined and has been used in the literature (see Deshayes and 
Picard, 1986; Carlstein, 1988; Bai, 1996). 

To study the limiting distributions of TLand T2,we introduce the following 
assumptions. First, we need to restrict the dependence of {x,,}. 

Assumption A. {x , ,~}is a strong mixing triangular array with mixing coeffi- 
cients that satisfy 

oC 


j 2 a (  j )y / (4iy)  < 00 for some y E (0,2).  
j= 1 

Next, we need to define a sequence of local alternatives to analyze the local 
power. The following specification seems natural. 

where {[,I is a sequence of identically distributed random variables and 
{q i ( . ) }is a sequence of random functions such that q , :0 X [ O , 1 ]  + !YIP. Thus, 
{qL(i/rz)}is a triangular array of p-dimensional random vectors. For instance, 
Bai (1996)uses a special case of (1). However, it turns out that the derivation 
of well-defined limiting distributions requires not only (1 )but also the speci- 
fication of P(x,,,5 t, x ~ ( ~ + ~ )- 5 t ' )  in our context. 5 t ' )  P ( x , ,  5 ~ ) P ( x , ( , + ~ )  
That is, the covariance kernel of the well-defined limiting null distribution 
depends on the joint d.f.'s {P(x,, 5 t , ~ , ( , + ~ )5 t l ) }and also on the marginals 
{ P ( x , ,5 t ) } .More specifically, we require 

for some deterministic sequence { T , } ~ = ~E [0,1] such that T,,= o(1). 
The next assumption accommodates both (1 )and (2). 

+ 6 n P 1 / 2 ( 1- ) (F ( t ) G( i-+ d , t ' )  + F(tl)G(', t ) ) ,
n 



where 

(i) Fd( . ,.) and F ( . )  are the d.f.'s of some p-dimensional random vector [,, i.e., 
Fd(t, t ' ) = P([, 5 t,[L+d5 t'), F ( t )  = P([,5 t ) , and F(f) is continuous; 

(ii) the marginal d.f. of the 	qth element of [, is strictly increasing on g? for q = 

L2, .  . . > p ;  
(iii) 	Gd(.,.,.,.) and G( .,.) are the d.f.'s of some p-dimensional strong mixing ran- 

dom function v,(.), i.e., 

Gd(r.rf ,t , t ' )  = P(q,(r)  5 t ,v iTd( r l )5 t ' ) ,  G(r, t)  = P(vz( r )5 t ) .  

The term G(r ,  t)  is continuous in t for all r, and there is (r, r', t )  such that 
G(r ,  t)  # G(rl ,  t). 

Assumption B defines a sequence of local alternatives to the null hypothesis 
with 6= 0 corresponding to the null hypothesis. Passing each element o f t '  to 
positive infinity, we obtain P ( x , ,  5 t ) :  

which is a mixture of two d.f.'s. The d.f. converges to the null as the sample 
size goes to infinity: lim,,,,H,,,(t) = F(t) .  Assumption B includes a sequence 
of multiple-change local alternatives and a sequence of smooth-transition local 
alternatives because Gd( . , . ,-,.) can depend on the set of change points. To an- 
alyze the asymptotic behavior of our test statistics, we first consider a sequen- 
tial empirical process: 

defined on [O,]] X XI'. The next theorem shows that the limiting distribution 
of K,(r, t)  depends on a nuisance parameter: 

oc 

a(t,t ' )  = 2 (Fd(t, t ' )  - F(t)F(t ' )) .  
d=-oc 

THEOREM 2.1. Under Asszimptions A and B, 

where K( . , . )  is a mean-zero Gaussian process with covariance kernel 

E(K(r,  t)K(ri, t ')) = min(r, r 1 ) a ( t ,  t ' )  

and P ( K ( - , . ) E C([0,1] X %I3)) = 1. 

The limit process K( . , - )  is sometimes referred to in the literature as a Kiefer 
process. Yoshihara (1975) proves K,,(.,.) 3 K( . , . )  under the strict stationarity 
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assumption of {xni}with 6 = 0. In contrast, Assumptions A and B require only 
marginal strict stationarity and are independent of the dimension p of xni. 

We can rewrite the test statistics as 

where 

By applying the continuous mapping theorem (CMT) to Theorem 2.1, we ob- 
tain the limiting distributions. 

COROLLARY 2.2. 

(a) Under the null hypotltesis, i.e., Assumptions A and B (i) with S = 0, 

TI 4 sup sup 1 KO(r,  t )  1 ,
O<r<l re^^ 

+ishere Ko(r ,  t )  is a mean-zero Gaussian process with covariance kernel 

E(KO(r ,  t )KO(r ' ,  t ' ) )  = (min( r ,  r ' )  - rr' ) u ( t ,  t ' ) .  

(b) Under the sequence of local alternatives, i.e., Assunzptions A and B ,  

T,  4 sup sup / KO(r,r )  + S ([ G ( s ,  t )ds  - r [G ( s ,  t ) d s )  1,
0<r41 ~ € 8 1 ~  

where the set { ( r ,t )  :J";G ( s ,  t ) d s  - rJ",: G ( s ,  t )ds  # 0) is of positive Lebesgue 
measure. 

When {x,,,}is independent and identically distributed (i.i.d.), the limiting null 
distributions are free of nuisance parameters (see Deshayes and Picard, 1986), 
and the covariance kernel of K0(r, t)  simplifies to (min(r, r ' )  - rrt)(Fo(t,t ' )  -
F(t)F( t l ) ) .  When {x,,} is strong mixing, however, the limiting null distribu- 
tions depend on a nuisance parameter, a( . , . ) .Thus, we cannot tabulate the 
critical values for the test statistics a priori. To circumvent the nuisance param- 
eter problem, we develop a new simulation procedure. In what follows, we first 
simulate the sequential empirical process, and then we simulate the test statis- 



tics (for the weak convergence of the bootstrap empirical process for i.i.d. ran- 
dom variables and for strictly stationary strong mixing random variables, 
respectively, see Bickel and Freedman, 198 1; Buhlmann, 1994). 

Given the sample w, let x,,(w) denote a particular realization of x,,. We de- 
fine a simulation version of the sequential empirical process by 

where 

P1,(t;w)= F x I(x,,,(w) 5 t). 
I2 , = I  

Whereas the bootstrap of Efron (1979), Kiinsch (1989), and Biihlmann (1994) 
uses multinomial random variables as the random weighting {z,), our simula- 
tion method uses possibly continuous random variables as the random weight- 
ing {z,}. Our simulation method can be considered a block version of some 
weighted bootstrap (see van der Vaart and Wellner, 1996, Example 3.6.12, 
p. 354). The block length 4 plays the same role as that in the blockwise boot- 
strap of Kunsch (1989) and Buhlmann (1994). Whereas Buhlmann (1994) shows 
the weak convergence of the block bootstrap empirical process for strictly sta- 
tionary mixing random variables, his results cover neither the weak conver- 
gence of the sequential empirical process nor the weak convergence under a 
sequence of local alternatives. We develop a necessary asymptotic theory as 
follows. 

Assumption C. {xni} is a strong mixing triangular array that mixing coeffi- 
cients satisfy 

for some y > 0 and even integer Q 2 16. 

Assumption D. {z ,}:~~" are independent random variables independent of 
{x,,,) with mean zero, variance 1/ t ,  and ~ ( z f )  = 0(1 / t2 ) ,  where t -+ oo as 
n -+co and 4= In practice, we recommend the choice z ,  -~ ( n ' / ~ ) .  NID(O,l/e). 
The reason is that the finite-sample distribution of K 4 ( .  ,.;w) is Gaussian when 
z ,  -NID(O,l/e). 

THEOREM 2.3. Under Assulnptions B-D, 
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Let 

for m = 1,.. . ,i z  - e. We define a simulation version of the Kolmogorov- 
Smirnov statistic by 

and a simulation version of the CramCr-Von Mises statistic by 

By applying the CMT to Theorem 2.3, we obtain the limiting distributions of 
TIFand T;". 

COROLLARY 2.4. Under Assumptions B-D, 

T,*(w)% sup sup 1 KO(r ,t)l w a s . ,  
O i v i l  ,EInp 

Contrary to Corollary 2.2, the limiting distributions of the simulated test sta- 
tistics do not depend on 6. Because of the additional randomness due to { z , }  
and the assumption E = ~ ( n " ~ ) ,the simulation version is less sensitive than 
the original test statistics. Thus, the ? z - ' / ~  term in local alternatives does not 
affect the limiting distribution of the simulated test statistics. Corollaries 2.2 
and 2.4 suggest the following simulation procedure. 

(1) Cornpute T, and T2. 
(2) Generate {T;('');,, and {T,*(')}$:=,,where T;( ' )  and T, ' J '  are based on 

{ z :')}~I~+~for] = 1,2,. . . ,J. 
from {T<(')}&,and {T;("}i=,. 

respectively. 

By the Glivenko-Cantelli lemma, lim,,, = cl,,, w-as. and lim,-,, t,',, = 

czarlW-a.~.,where c,,,, and c~~~are the level-a critical values of T," and T: 
conditional on w and n, respectively. By the continuity of KO(.,.) (see Theo- 

?:,,,and?fa,,valuecrltlcalEstrmate the level-u (3) 



rem 2.1) and Corollary 2.4, limn,,clan = cl, w-a.s. and limn,,czan = cza 
o-as. ,  where cl,, and czan are the critical values of the limiting distributions of 
TI and T2, respectively. Thus, Corollaries 2.2(a) and 2.4 imply 

lim lim P(T, > c;,,,) = a ,  lim lim P(T2> ck,,) = a. 
n+m J+m n+m J+m 

Because KO(., is a zero-mean Gaussian process, the quantiles of / KO(r, t) + c (a )  

are always larger than the corresponding quantiles of 1 KO(r, t)l for every 
c f 0 and (r, t )  E (0,l)  X %P. Thus, Corollaries 2.2(b) and 2.4 imply that, 
when S > 0, 

Therefore, the proposed tests have nontrivial power against local alternatives. 
From this point on, we focus on the test consistency against a sequence of 

multiple-change global alternatives, which is defined as follows. 

Assumption E. The d.f. of xni is 

fo rk  = 1,...,K + 1, where0 = ro< r,< ... < .rr, < r,+,= 1. 

(i) Fk(.) is continuous for all k, and there are k f k '  and t such that Fk(t) + F k , ( t ) .  
(ii) 

uniform in t E % P  for k = 1,.. . ,K + 1. 

Assumption E means that the d.f. of x , ,~changes K times. Assumption E(ii) 
states that the Glivenko-Cantelli theorem holds in each subsample. Imposing 
more primitive assumptions, such as Assumptions B and C, in each subsample 
will imply Assumption E(ii). 

THEOREM 2.5. Under the sequence of multiple-change global alternatives, 
i.e., Assumptions D and E, 

lim n- ' / '~ ,  > 0 @-as., lim n - ' ~ ,  > 0 @-as. ,  
n+oc n+oc 

e l 2= O ( 1 )  (-IT;; = 0,,(1). 

Because n- '12~,  and n-IT2 converge to positive constants with probability 
one, TI and T2 almost surely diverge to positive infinity at rate n112 and n, re- 
spectively. On the other hand, e - l I 2 ~ ;  and (-IT2 are bounded in probability, 
and so the simulated statistics diverge in probability at rate 4 'I2 and 4, respec- 
tively. Thus, the proposed tests are consistent because the test statistics diverge 
faster than the corresponding simulated test statistics by Assumption D. How-
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ever, a direct consequence of diverging critical values under the alternative is 
the loss of power in finite samples. The proposed tests would be less powerful 
than ideal tests in which the fixed critical values of the limiting null distribu- 
tions are available. 

In concluding this section, we mention another potential approach. This ap- 
proach would take the following steps. First, estimate the covariance kernel by 
the heteroskedasticity and autocorrelation consistent (HAC) covariance matrix 
estimation methods. Second, generate multivariate normal random variables 
based on the Cholesky decomposition of the estimated covariance matrix (for a 
related bootstrap procedure in the context of spectral density estimation, see 
Diebold, Ohanian, and Berkowitz, 1998). When the Bartlett kernel is used in 
the HAC estimation, the present simulation approach and this simulation ap- 
proach are eq~ivalent .~  The advantage of our simulation approach over this ap- 
proach is that our simulation method can directly generate random variables 
without estimating the n X n covariance matrix and computing the Cholesky 
decomposition. To the best of our knowledge, the standard statistical packages 
cannot handle n X n matrices when a is huge, say, 5,000. 

3. MONTE CARL0 SIMULATIONS 

In this section, we evaluate the finite-sample performance of the simulation 
procedure in a set of Monte Carlo experiments. We use the following stochas- 
tic volatility model as the data generating process (DGP): 

with A = -0.4, -0.2, 0.0, 0.2, 0.4, p = 0.90, 0.95, n = 250, 500, 1,000, 1,500, 
T = 0.25, 0.50, 0.75. The parameter values roughly correspond to the param- 
eter estimates for the weekly financial time series studied in Section 4 (see 
Jacquier, Polson, and Rossi, 1994, Tables 1 and 2). We draw h, from the im- 
plied unconditional distribution and discard the first 1,000 observations to min- 
imize the effects of the initial values. 

The choice of the block length is an important question in practice. In fi- 
nite samples, the test results depend on the block length used because simu- 
lated critical values depend on the block length. Although there exist data- 
dependent methods to select the block length, such as Hall, Horowitz, and Jing 
(1995) and Biihlmann and Kiinsch (1996), they may not work in our context. 
Because the test statistics diverge to positive infinity under the alternative hy- 
pothesis, the block length selected by the data-dependent method may not sat- 
isfy e = o(nl / ' ) .  Therefore, we simply use e = 10, 20,. .., 100 for the size 



analysis and n = 10, 100 for the power analysis. As a result of the computa- 
tional requirement, we set the number of Monte Carlo replications at 2,000 for 
n = 250, 1,000 for n = 500, 500 for n = 1,000 and 250 for rz = 1,500, and the 
number of simulation replications at 199 throughout the experiments. We use 
z ,  -N(O,l/t). Table 1 gives the implied unconditional variances. 

Tables 2 and 3 report the rejection frequencies at the 1%, 5%, and 10% lev- 
els of significance under the null hypothesis. The two tables suggest that the 
rejection frequencies are decreasing in t and increasing in p. Thus, stronger 
dependence requires larger block lengths to obtain good size performance. 

Tables 4 and 5 report the rejection frequencies at the 5% significance level 
under the alternative hypothesis. Whereas the shift does not change the uncon- 
ditional mean, it changes the unconditional variance. 

As expected, the rejection frequencies increase in the sample size, increase 
in the break size, and depend on break location. These results apply not only to 
our tests but also to other tests for structural change. The sensitivity to the choice 
of the block length is decreasing in the sample size in the following sense. For 
given A and r,the ratio 

the actual power for 4 = 10 

the actual power for t = 100 

is decreasing in n. 
The power is asymlnetric with respect to the break locations. That is, the 

power when r~ = 0.25 tends to be higher than the power when r = 0.75. Al- 
though the rejection probability should be close to one regardless of the break 
location in large samples, the break location may affect the power in small sam- 
ples for the following reason. Immediately after a shift in the parameter, there 
is some adjustment period during which the effect of the prechange model re- 
mains and the empirical d.f.'s cannot be accurately estimated. When r = 0.75, 
the reliable sample size for the second empirical d.f. may be relatively small. 
The degree of the asymmetry decreases as the sample size increases, however. 

4.APPLICATIONS 

In this section, we apply our simulation approach to testing for change in fi-
nancial markets. We use the weekly log-difference of the spot exchange rates 
(middle rate) for the £/$, DM/$, franc/$, and yen/$ and the weekly log- 

TABLE1. The implied unconditional variances 
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TABLE2. Finite-sample rejection frequencies under the null ( p  = 0.90) 

Sample Block Kolmogorov-Smirnov Cram&-Von Mises 
size size 
a e 0.01 0.05 0.10 0.01 0.05 0.10 

250 10 0.013 0.105 0.194 0.019 0.1 19 0.234 
20 0.001 0.026 0.087 0.003 0.055 0.140 
30 0.000 0.006 0.041 0.002 0.030 0.109 
40 0.000 0.002 0.025 0,001 0.022 0.091 
50 0.000 0.004 0.024 0.000 0.020 0.098 
60 0.000 0.005 0.024 0.002 0.027 0.112 
70 0.000 0.008 0.032 0.002 0.042 0.141 
80 0.000 0.013 0.053 0.007 0.061 0.192 
90 0.002 0.026 0.089 0.012 0.106 0.252 

100 0.004 0.044 0.128 0.022 0.154 0.324 

500 10 0.032 0.126 0.215 0.037 0.130 0.242 
20 0.008 0.058 0.128 0.011 0.081 0.157 
30 0.003 0.03 1 0.080 0.006 0.051 0.122 
40 0.002 0.019 0.054 0.004 0.034 0.104 
50 0.000 0.010 0.041 0.002 0.026 0.101 
60 0.000 0.010 0.033 0.000 0.021 0.091 
70 0.000 0.005 0.024 0.000 0.021 0.088 
80 0.000 0.005 0.022 0.000 0.023 0.076 
90 0.000 0.003 0.020 0.001 0.016 0.086 

100 0.000 0.004 0.018 0.000 0.016 0.083 

1,000 10 0.032 0.130 0.220 0.036 0.140 0.250 
20 0.014 0.062 0.126 0.014 0.094 0.170 
30 0.008 0.046 0.114 0.012 0.058 0.138 
40 0.002 0.028 0.068 0.008 0.054 0.126 
50 0.000 0.018 0.068 0.008 0.044 0.112 
60 0.004 0.010 0.050 0.004 0.036 0.098 
70 0.000 0.012 0.040 0.006 0.034 0.084 
80 0.002 0.010 0.032 0.002 0.028 0.078 
90 0,000 0.004 0.028 0.004 0.032 0.086 

100 0.000 0.006 0.020 0,000 0.030 0.076 

1,500 10 0.048 0.164 0.280 0.056 0.172 0.292 
20 0.016 0.092 0.216 0.020 0.116 0.204 
30 0.012 0.088 0.160 0.016 0.072 0.172 
40 0.012 0.060 0.124 0.012 0.060 0.140 
50 0.012 0.040 0.112 0.012 0.048 0.128 
60 0.008 0.044 0.104 0.008 0.060 0.112 
70 0.008 0.032 0.088 0.008 0.048 0.104 
80 0.004 0.024 0.088 0.008 0.036 0.088 
90 0.004 0.020 0.064 0.008 0.032 0.092 

100 0.004 0.020 0.068 0.004 0.028 0.088 

Notes The DGPlsn,, = exp(h, , , /2)~, ,h,, ( c , , ~ ) , ) 'N(02X1,1Z).The number= -0 5 + 0.90hn(,-,, + fill,,-
ot bootstrap repl~cations I\  set to 199, and the number of s~mulat~on I\ 5et to 2,000 for n = 200,repllcatlons 
1,000 for n = 500. 500 for n = 1,000, and 250 for n = 1,500. 



TABLE3. Finite-sample rejection frequencies under the null ( p = 0.95) 

Sample Block Kolmogorov-Smirnov CramCr-Von Mises 
size size 
n e 0.01 0.05 0.10 0.01 0.05 0.10 

Notes: The D G P ~ ~ I , , ,  exp(h,,,/Z)~,,h,, t 0.95h,,,,-,l + m7,,-N(02X1,12).The number= = -0.5 i&, ,qC) '  
of bootstrap replications is set to 199, and the number of simulation replications is set to 2.000 for rz = 200, 
1,000 for iz = 500, 500 for n = 1,000, and 250 for n = 1.500. 
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TABLE4. Finite-sample rejection frequencies under the alternative ( p = 0.90) 

Sample Break Break Kolmogorov-Smirnov Crame'r-Von Mises 
size ratio size 
n 7~ 3. t = 10 .t = 100 [ = l o  [ = l o o  

(continued) 



TABLE4. Continued 

Sample 
size 
lz 

Break 
ratio 

rr 

Break 
size 
a 

Kolmogorov-Smirnov 

t = 10 4 = loo 

CramCr-Von Mises 

( = l o  . e = l o o  

note^: The DGP is s,, = exp(li , , , /2)~, ,h,,, = -0.5 + i I ( i  2 [nr r ] )  + 0.9011,,,-, , + a q c .  ( ~ , , q ! ) '  -
iV(O,,,,I,). The number of bootstrap replications is set to 199, and the number of simulation replicalions rs set 
to 2,000 for I L  = 200, 1,000 for n = 500, 500 for n = 1,000. and 250 for 11 = 1.500. 

difference of the Dow Jones industrial average, Standard & Poor's 500 com- 
posite index, and NYSE composite index. To minimize the number of missing 
values, we uye the Wednesday returns. We retrieve the data from the DATA- 
STREAM database. Table 6 summarizes the data. 

The choice of the block length is important in practice. We select the block 
lengths by response surface as follows. Let t: be the block length that mini- 
mizes the sum of the absolute deviations from the nominal l%,5%, and 10% 
significance levels in Tables 2 and 3. We regress log 4,"on one and log n with 
the constraint that the slope coefficient is less than or equal to 0.4999. The 
constraint least square estimates for the Kolmogorov-Smirnov statistic are 

log 4;= 0.134 + 0.499 log n (1) 

for p = 0.90 and 

log C,* = 0.623 + 0.499 log n (2) 

for p = 0.95. The constraint least square estimates for the CramCr-Von Mises 
statistic are 

log +?$ = 0.916 + 0.446 log n (3) 

for p = 0.90 and 

log 4: = 2.444 + 0.292 log n (4) 
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TABLE5. Finite-sample rejection frequencies under the alternative ( p  = 0.95) 

Sample Break Break Kolmogorov-Smirnov CramCr-Von Mises 
size ratio size 
n T h t = 10 C = 100 C = 10 C = 100 

(continued) 



Sample Break Break Kolmogorov-Smirnov CramCr-Von Mises 
size ratio size 
n T I C = 10 C = 100 C = 1 0  4?=100 

1,500 0.25 0.2 1 .000 0.748 1 .000 0.920 
0.1 0.944 0.276 0.952 0.480 

-0.1 0.936 0.244 0.940 0.476 
-0.2 1.000 0.656 1 .000 0.868 

Notes: The DGP is u,,,= exp(h,,,l2)e,,h,,, = -0.5 I l ( i  2 [nrr])+ 0.95h,(,-l) f aD,,is,,^,)' -
N(O,,,,I,). The number of bootstrap replicatio~~s is set to 199, and the number of simulation replications is set 
to 2,000 for n = 200, 1,000 for n = 500, 500 for n = 1,000; and 250 for n = 1,500. 

for p = 0.95. The constraint is binding for the Kolmogorov-Smirnov statistic, 
and the unconstrained least square estimates for the slope coefficient are larger 
than 0.5. 

We use z ,  - N(0, I/[) and set the number of simulation replications at 999. 
Table 7 reports the simulated p-values for the marginal d.f. of x,, ( p  = 1) and 
for the joint d.f. of (X,,,X,,(,-~,)( p  = 2). The first seven rows show the results 

TABLE6. Data 

Sample Sample 
Datastream code period size 

British pound USDOLLR 1973-1996 1,252 
Deutsche mark DMARKER, USDOLLR 1973-1996 1,252 
French franc FRENFRA,USDOLLR 1973-1996 1,252 
Japanese yen JAPAYEN, USDOLLR 1973-1996 1,252 
Dow Jones industrial average DJINDUS 1969-1996 1,461 
NYSE composite NYSEALL 1976-1996 1,095 
S&P 500 composite S&PCOMP 1969-1996 1,461 

~Votes:The weekly (Wednesday) log-difference is used. The exchange rates against the British pound are trans- 
formed into those against the U.S. dollar. 



TESTING FOR DISTRIBUTIONAL CHANGE 173 

TABLE7. Applications 

British pound 
Deutsche mark 
French franc 
Japanese yen 
Dow Jones 
NYSE 
S&P500 

British pound' 
Deutsche mark2 
French franc2 
Japanese yen2 
Dow Jones2 
NYSE 
S&P5002 

1Vore.r: 11 = 1 corresponds to the marginal di~tribution function of I,,,,and p = 2 corresponds to the jolnt dislri- 
bution function of ( x , , , . x , , , , _ , , ) .where s,,, is a random variable in question. The block lengths used are e,' = 
exp(0.134 + 0.499 logti). Y i  = exp(0.623 + 0.499 logn). (; = exp(0.916 + 0.446 log PI), and = exp(2.444 -
0.292 log n) . Superscript 2 indicates squared returns. The number of bootstrap replications is set to 999. In pa- 
rentheses are the maximizinlp years of the Kolmogorov-Smirnov statistics. 

for returns, and the last seven rows show the results for squared returns. Change 
in the d.f. of returns implies change in the d.f, of squared returns; however, we 
investigate both d.f.'s because the second moment of returns is often of inter- 
e5t. The joint d.f. contains information about the dynamics, which the mar- 
ginal d.f. may not. Whereas we do not find very strong evidence for structural 
change in the spot exchange rates, we find strong evidence of structural change 
in the stock returns. In contrast, we find some evidence for change in the d.f.'s 
of squared returns of the spot exchange rates. The results show no qualitative 
difference between the marginal d.f. and joint d.f. 

In parentheses are the maximizing years of the Kolmogorov-Smirnov dis-
tances. The break years for stock returns are concentrated in the middle of 
the 1980's. A possible interpretation is that the trading strategies and technol- 
ogies in stock markets changed during the 1980's. For example, the change 
in programming trading after the October 1987 crash may explain our find- 
ing of structural change in stock markets4 Our finding also raises ques- 
tions about the traditional financial modeling that assumes the stability of 
distributions. 



5 .  CONCLUDING REMARKS 

Our tests do not substitute for the existing parametric tests but rather comple- 
ment them. Under the correct specification, parametric tests should be more pow- 
erful and informative than nonparametric tests. When the correct specification 
is unknown, however, our nonparametric tests will serve as a useful pretest. 

The choice of the block length is important in practice. Although the data- 
dependent methods of Hall et al. (1995) and of Biihlmann and Kiinsch (1996) 
seem promising, the asynlptotic behavior of the selected block length under the 
alternative hypothesis must be analyzed. We leave it for future research. 

We conjecture that it is possible to extend our results for the residual empir- 
ical d.f.'s along the lines of Bai (1994, 1996). For example, one can consider 
tests for structural change based on the empirical d.f.'s of the residuals when 
the disturbances are strong mixing. 

NOTES 

1. D([0,1] X 9 v )  is the space of functions on [0,1] X xiJthat are right continuous and have 
left limits. The Skorohod topology for D([0, 11 X >R1')is defined as in Billiiigsley (1968, pp. 11 1- 
114) except that A is replaced by the class of strictly increasing, continuous mappings of [0,I] X 

X"onto itself. 
2. Under the null hypothesis of no change, {I,,,}is a single array. However, we use triangular 

arrays to analy~e the asymptotic behavior under local alternatives. 
3. See Appendix B.5 for a brief discussion. 
4. We owe this interpretation to J. Qian. 
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APPENDIX A 

We will use the following lemma in the proofs. 

LEMMA A.1. Let {(,,):=, be strong mixing random variables with mixing coeffi- 
cients { a (j ) } z l  and let a(0)= 1. 



(a) Suppose that 
( i )  ItnrI ,,,,and sup 0,=E ( t n , )1,5 ~ ( 6 : ~ )5 T ~ + Yfor Vi  5 IZ and 'dn 2 1, 

(ii)x:, ,jQI2a(j)?lQ+? < co, 

for sohe-T,, > 0, y > 0 ,  and even integer Q > 2. Then tlzere is C,,,,e > 0 such 
that 

for every n 2 1 .  
(b)  Suppose that E([,,) = 0 ,  rzn 2 E(<;T6), and r4, 2 ~ ( [ , 2 , ( ~ + ' ) )for some 6 > 0 ,  

r2>,> 0, T~~ > 0, and 'di5 n. Then 

( c )  Suppose that F,,d(t,  t ' )  = P ( t n l  t,tn(i+d)5 t ' ) ,  F,,(t) = P ( t n z5 f), and 
C,",, j a ( j )  < co. Then 

+ min(r, r ' )  lim 2 (Fn,d(t ,t ' )  - F,,(t)Fn(tl)).  
n + r  d=-n 

Part (a) is a modified version o f  Lemma 3.1 in Andrews and Pollard (1994) with 
their T replaced by our 7,. The proofs o f  (b )  and (c) are straightforward and are pro- 
vided in Appendix B.  1. 

Proof of Theorem 2.1. First, we show convergence o f  the sample covariance kernel 
to the specified covariance kernel. Second, we establish convergence o f  the finite di- 
mensional distributions. The proof o f  tightness is analogous to the proofs o f  Theorems 
2.1 	and 2.2 in Sen (1974) and is provided in Appendix B.3. 

First, we will show that 

iim E(K,,(r, t)K,(r: t ' ) )  = min(r, r r ) u ( t ,  r ' ) .  	 ('4.11
n+m 

By Theorem A5 in Hall and Heyde (1980) and Assumption A, 
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Thus, the left-hand side of (A.l) is absolutely convergent. By Lemma A.l(c), 

05 

+min(r, r l )  2 (Fd(t, t ' )  - F ( t ) F ( t l ) )  
d=-cc 

= min(r, r f ) n ( t ,t ' ) .  (A.3) 

Thus, (A.l) is proved. 
Appendix B.2 shows that we can confine our attention to weak convergence in 

D([O,l]pfl)  instead of that in ~ ( [ 0 , 1 ]X !)I"), as Billingsley (1968, p. 197) does. Next, 
we will establish the convergence of the finite dimensional distributions of {K,,} to those 
of {K). By the CramCr-Wold device, it suffices to show that 

for V(w, ,...,w ~ ) 'E !)Ik, V(rl ,...,r,')' E [O,1Ik, V(r; ,...,t;)' E [O,l]k~',and Vk 2 1. 
Because the degenerate case is trivial, we assume lim,,,, ~ a r(xF=,c, K, (r,, tJ)) > O if 
the limit exists. Consider x:=,X,,,, where 

Because x:"=,X,,, = x;=,ojKn(rj, t , ) / { ~ a r ( Z f = ~W, K,,(rj, tj)))'I2, it suffices to 
show that x:'=lX,i -% N(0,l).  We will apply Theorem 3.6 in Davidson (1992). 
Here E(X,,) = 0 and E ( ~ ; = , X , , ~ ) '= 1 satisfy his Assunlption A l ,  and 
/X,,/c,l 5 xf=l1 wJ 1 for all i 5 n and n 2 1 satisfy his Assumption A2. 
Our Assumption A implies his Assumption A3. His Assumption A4 is im-
plied by sup,,,, nc? = sup,,, {Var(X&, ojKTz(';,tJ))}-1/2 and absolute convergent 
liin,,,E(K,(r, t)K,,(rl, t')). Thus, Theorem 3.6 in Dlividson (1992) completes the proof 
of the finite dimensional convergence. 

Finally, P(K '  E C) = 1 by Theorem 15.5 in Billingsley (1968). 

Proof of Corollary 2.2. By Theorem 2.1 and the CMT, 



By applying the CMT again, 

and 

It remains to show that {(r,t )  :J",'G(s, t)ds - rJ,' G(s, t)ds # 0) is of positive Lebesgue 
measure. Suppose that Sd G(s, t)ds - rJd G(s, t)ds = 0 for all (r, r).  Then it implies 
that 

for all (r, t). However, this contradicts Assumption B(iii). Thus, there is ( rx,t") such 
that 

Because SiG(s,  t)ds - r.fd G(s, t) is continuous in (r, t), there is a neighborhood 
of ( r * , t * )  in which S,'G(s, t)ds - rS,'G(s,t)ds Z 0 holds. Tilerefore, { ( r , t ) :
Ji G(s, t)cls - r$d G(s, t)ds # 0) is of positive Lebesgue measure. 

Proof of Theorem 2.3. Let E, and Var, denote conditional expectation and vari-
ance, respectively, given the sample w. Let z ,  = 0 for i = n - C + 2,.  ..,n. Let us write 
K:(r, t;w) = Cy=lf,,(z,, r, t ;w), where 

for (x, r, t )  E 91 X [0,1] X % p .  Then the triangular array {,f;,,(z,,r, t;w)) is independent 
within rows. Given the sample w, Theorem 10.6 in Pollard (1990) can deliver the (con-
ditional) weak convergence: K,:(. ,.;w) =+K(. ,.). Thus, if the following conditions of 
Pollard hold w-as., then the same theorem of Pollard delivers the (almost surely condi-
tional) weak convergence: K,"(. ,.;w) a K ( . ,.) w-as. 

(i) lirn,,,, E,{Kz(r, t ;w)K;(rf, t ' ;  w)) exists for every (r, t), (r', t ') in [O, 11 X !I?''; 
(ii) the pseudo-metric p(r ,  r', t, t ') = lim,,,,p,,(r, r', t ,  t l ;w) is well defined, where 

if p ( r , , r,!,, t,, t,;) -+ 0, then p, ( r , ,r;, t,, t,:;w) + 0, where {(r,,,t,)>,"=l and 
{(ri,tL))r=, are deterininistic sequences. 
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(iii) lim ~up,~, ,~y=,  E,(Fi(z; w)) < w where F,, ( z ;w) is the envelope off,,; 
(iv) xy=, E{F$(x; w)I(F,,(x; w) > 8)) -+ 0 for each E > 0; 
(v) { f,,) are manageable in the sense of Definition 7.9 of Pollard (1990, p. 38). 

Our conditions (i), (ii), (iii), (iv), and (v) correspond to Pollard's conditions (ii), (v), 
(iii), (iv), and (i), respectively. 

(i) We will prove the uniform convergence of E,(K:(r, t; w)K:(r', t ' ;o))  to 
min(r, r l ) u ( t ,  t ') w-a.s. Without loss of generality, we assume that r < r ' .  Consider 

Var,(K,f (r', t'; w) -K,*(r, t; w)) - EIVar,(K,f(rl, t ' ;w) - K,"(r, t ;  o))] 

where 

1 .'+'-I 1 j+e -1  

-e 2 ( I ( , Y , $ ~ ( ~ )  fi,(tl;w)) - -e i, 
2 (I(X,i(@) 5 t)  -5 t ' )- fitz(t;w)) 

Let II.//, denote ( E ~ x ~ ' ' ) ' / P .By the Minkowski inequality and Lemma A.l(a) with 
Q = 16, 



and 

The term 0 ' s  in (A.lO) and (A. l l )  are uniform in j ,  t ,  and t '  by Lemma A.l(a) with 
7, = 1 and the definition of mixing coefficients. By applying the Minkowski inequality 
to (A.9) -(A.1 l) ,  it follows that 

where 0 is uniform in j ,  t ,  and t ' .  Using Lemma A.l(b) with 6 = 2, 

where T~~ = sup,,, E ( Z f , ) ,T,,, = sup,,, E ( Z : , ) ,  and the term 0 is uniform in r. t ,  and t ' .  
Equations (A.12) and (A. 17) imply 

A similar argument leads to 

By the Minkowski inequality, 

It follows from (A.14)-(A.16) that 

E{Var,(K; (r', t ' ;w) - KA (r, t ;w)) - E[Var,(K:(r', t ' ;w ) - K,"(r,t ;u ) ) ] ) ~  
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where the term 0 is uniform in I., r ' ,  t, and t'. A similar argument leads to (A.17) for 
r 2 r ' .  By the Markov inequality, (A.17) implies that, for every 77 > 0, 

Because C = o(n'I2), it follo~vs that 

for every 77 > 0. By the Borel-Cantelli lemma, 

where the term o is uniform in r, r', t, and t ' . If we prove 

E [Var,(K,*(rl, t '  ;w) - K,, (r, t;  w))] - Var(K(rl, t ' )  - K(r, t)) = o(l) ,  (A.20) 

where the term o is uniform in r,  r ' ,  t, and t', then (A. 19) and (A.20) will imply 

Var,(K;(r', t ' ;w) - K,;(r, t ;w)) - Var(K(rl, t ' )  -K(r, t)) = o(1) w-a.s., (A.21) 

where the term o is uniform in r, r ' ,  t, and t ' . Then we have 

E,(K:(r, t;w)K,Y(rl, t l ;w))  = E(K(r ,  t jK(rr ,  t ' ) )+ o(1) w-a.s., (A.22) 

where the term o is uniform in r, r', t ,  and t'. which implies the pointwise conver- 
gence (i). 

Equation (A.20) remains to be proved. It suffices to show that 

E[E,(Ki(r, t; w)K,l(r', t ' ;  w))] = min(r, r f ) u ( t ,  t ' )  + o(l),  (A.23) 

where the term o is uniform in r, r', t ,  and t ' .  The left-hand side of (A.23) is 

E [E,(K,"(r, t; w)K,';'(rl, t i ;  w))] 



- - 

= A,, + B, + C,, + D,. (A.24) 

First, 

1 ~nin([ar],[~z~.']I-etl1 j+? - l , j+<- l  

- C - 2 2 (Fi,_,,(t, t ' )  - F ( t ) F ( t l ) )+ o(P12-"~)
iz j~ 1 € El= j  i*=j 

m 

- min(r , r l )  (F,(t, t ' )  - F ( t ) F ( t t ) )  
d=P 

n~in(r ,r ' )  '-' - 2 IdI(Fci(t, t ' )  - F ( t ) F ( t l ) )+ O ( t n - 1 / 2 )e ,=-,,I 

= min(r, r r ) u ( t ,  t ' )  f ~ ( l ) ,  (A.25) 

where the term o is uniform in r, r', t, and t' by the definition o f  mixing coefficients. 
Next, 

where the term o is uniform in r, r', t, and t' by the definition o f  Hnr,d(t, t ' ) and H,,,(t). 
Similarly, 



TESTING FOR DISTRIBUTIONAL CHANGE 183 

Last, 

" 
-- [min([nr] ,  [ izr '])  - t + 1 C 2 (F,-,(t, f') - F ( t ) F ( t l ) )+ O ( t n - " 2 )

n 3  r = l  j=1 

where the term o is uniform in r, r ' ,  t, and t' by  the definitions o f  HnI ,d ( t ,  t ' ) ,  H,,,(t), 
and mixing coefficients. Therefore, (A.20) follows from (A.24)-(A.28). 

(ii) Because p,(r, r ' ,  t, t ' ;  w)  = [E,,(K,"(rf, t ' ;  w)  - K,^(r,t ;w ) ) 2 ] " 2 ,  ( i )  implies that, 
for V ( r ,  t ) , V ( r f ,  t ' )  E (0,l) X 9 ? P ,  

p ( r , r ' , t , t l )= lim p,(r,rf, t, t l ; w )  
, Z + S  

= ( r r u ( t ' ,  t ' )  - 2 m i n ( r , r ' ) u ( t 1 ,  t )  + r u ( t ,  t))'" w-a.s. (A.29) 

Thus, p(r ,  r ' ,  t, t ' )  is well defined for all ( r ,t ) ,  ( r ' ,  t ' )  in [0,1] X 8-i"w-a.s. Take a de-
terministic sequence {r,, r:. t,, t;} such that lim ,,,, p(r,, r i ,  t,, t,:) = 0. Because 

pn(rn,rr:,tn,t ; ; ~ ) ~sup t t ;w) '  p(r,r ' , t ,r ') 'I5 !pn(r , r r , t r  - f~ ( r , , r ! ; , f , , t , 9 ~ ,  
, , , ' , t  c' 

(A.30) 

(A.22) implies that lim,,, p,, (r,,, r,:, t,,, tl,; w)  = 0 w-as. 
(iii){F,,,( z ;  w ) }  are called the en\~elopes o f  { f,, ( z ,  r, t ;  w)}  i f  Ifn, (i,r, f ;  w) I 5 F,, (z;w) 

for all x, r, and t. W e  use the minimum envelopes, i.e., 

i+e-I 

F,,, ( z ;  w)  = I Z - ' / ~  Izl sup C 1 ( x n j ( @ ? ~ t ) - f i n ( t ; w ) .  
t € W P  j = i  

Then 

limsup E,(Fni(zi; w ) * )  
n+m r = l  

= iirn sup -
1 2 " 

sup (I(.xjZ,(w)5 t )  - Fa([ ;w))  
n--tm n r = l  t ~ W 1 '  

5 3 lim sup -
1 " 2 sup - x ( I ( x ,  ( w )  5 t ) -H,, ( t ) )r.=,,,,,, : { ' : r r l  .,,, 


+ 3limsup -
1 x " 

sup - { 
I+?-l 

2 (H,(t? - ;1 
2 
" 

H n k i ~ )))2n ,=, , a t p  k= 1 

mailto:1(xnj(@?~t)-fin(t;w)


By Lemma Al(b) and the Borel-Cantelli lemma, one can show that (A.32) is O,,,(l). 
By the definition of H,,,(t), (A.33) is O ( Y / n ) .By a version of the Glivenko-Cantelli 
lemma given in Appendix B.4, (A.34) is 0,,(1). Therefore, (iii) is proved. 

(iv) By the Cauchy-Schwarz inequality, 

By the Markov inequality, 

1 < + ( - I  

r - sup I + { 2 ( I ( x , , , ( ~a i) - t Ili (sin)e tER13 /=, 

where 0 is uniform in i .  Thus, (iv) follows from (iii) and (A.35). 
(v) We use the covering number instead of the packing number (see Pollard, 1990, 

Definition 3.3 and the following inequality, p. 10). The covering number is defined as 
the smallest number of closed balls with radius ( x / 2 ) 4 ~ > ,  a,'F,,, ( i ,;w)' whose union 
covers {a, fnr(z,,  r, t;w)} where a ,  2 0 for i = 1,2,... , n  (see Pollard, 1990, inequality 
(10.7), p. 54). Thus, the following inequality must hold within each closed ball: 

for all zi,  a 2 0, and x > 0. An argument similar to the proof of (A.21) leads to 

I ,  

lim x a?E,(fni(zi, r', f ' ;w? -f,i(zi, r, t;w)l2 
n-cc ,=1 

oC 


= 2 a;p2(r , r ' ,  t, t ' )  w-a.s. 
i= 1 
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An argument analogous to the proof of (iii) yields 

.x .x 
lim - a:~, ~ , , ( z , ; w ) ~= -C w-as. 
r i i m  4 , = I  4 

for some C > 0. Thus, (A.37) can be approximated by 

3CI x22 a,2p2(r,r', t, t ') 5 T C 

for sufficiently large n. Let r, = 6"i and choose t, so that Fit,) = 6"jfor i,j = 1,2 ,..., 
[1/8]and 6" > 0. Then, for every (r, t)  E [0,1] X MP,  there is (i,j )  such that 

= r lim n-I E(I(X,~,5 tj) - I(.xni 5 t )  - F(tj) + ~ ( t ) ) '+ ( rL- r)u( t j ,  tj) 
n i m  j = - n  

5 C,,,,(F(t,) - ~(t))"( '+ Y'  + (rl - r )  sup u( t t ,  t ' )  
c'€:)ip 

where the inequality follows from Lemma A.1 (a) and we assume r < r, without loss of 
generality. If 6" solves 

then (A.38) holds for all sufficiently large n w-a.s. within each closed ball. Because the 
capacity bound is o ( x - ~ ( ~ 'Y ' ) ,  the integrability condition is also satisfied. 

Proof of Corollary 2.4. Because 

[nr] - t + 1 

n - e + l  n - t + l  

it follows that d * ( .,.;w) * K O ( . ,  .) w-as. Then the CMT delivers the limiting distribu-
tion of TT(w). Let ,u, denote the probability measure that puts probability l / ( n  - t)on 
each element of { t / ~ z ,( e  + l ) /n ,...,( n  - l ) /n ) .  By Theorem 3.2 of Billingsley (1968), 



the probability measure p ,  X p,,(.)converges weakly to p X F ( . )  where p is the uni- 
form probability measure on [ O , 11. Then we have 

where the second equality follows from the weak convergence of d; (. ,.) to KO(.,.) and 
the last equality follows from the continuity of KO(.,.) and the weak convergence of 
P ,  X Pn?,(.)to P X F( . ) .  rn 

Proof of Theorem 2.5. We first consider the normalized distance, and then we con- 
sider the normalized bootstrap distance. Let k be a integer and v be a real number such 
that r k  < r < rk+land 0 5 k 5 K. Then the normalized distance is 

[nr]  [ l 7 7 i i  I 

-- n 
 'c, 

1-1 i = [ r ~ m , - , ] + ~  

Ln.1 - [ n r k l  [nr]K+l  [ n r j l- [nrj - , I+ F k + l ( f )  - C 40)n i= I n . 

%I ( k  > 0 ) C (5- r J - , ) F 1  ( t )  + ( r- r k ) F k +l ( t )  
] = I  

By Assumption E, there are k* and t" such that 
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Let r"  be a real number such that .irk* < r" < . irk-+, and 

Then it follows from (A.43)that 

l i ~ n  a-'/'d,,(r*, t " )# 0 o-a.s. 
n-+m 

Because the right-hand side of (A.43)is continuous in ( r ,t ) ,lim,,,,n-1/2dn(r, t )  # 0 
o-a.s. for ( r ,t )  in a neighborhood of ( r* ,t " ) .Therefore, I ~ r n , , , n - ' / ~ ~ ~  > 0 W-a .~ .and 
lim,7,,n-1T2 > 0 w-as. 

Next, the normalized bootstrap distance is 

Thus, l -- l /Z~;* and = 0,(1).= 0!,(1) 
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